Reduce Embodied Carbon with CarbonCure’s Concrete Solution

Information package for owners, developers, architects, structural engineers and contractors
The Embodied Carbon Challenge

You may already know that buildings are the source of 40% of the world’s annual greenhouse gas emissions; but did you know that by 2060, the world’s building stock is expected to double? That means we’re building a new New York City every month for the next 40 years. On top of that, between now and 2060, embodied carbon levels are predicted to account for almost half of the emissions from the built environment. And since concrete is the most abundant building material, innovation in concrete offers the biggest potential solution for embodied carbon reduction. The embodied carbon challenge has a concrete solution.

Why CarbonCure?

CarbonCure’s solution enables the production of the same reliable concrete but with a reduced carbon footprint. The technology injects a precise dosage of carbon dioxide (CO₂) into concrete during mixing where it mineralizes. The mineralized CO₂ improves the concrete’s compressive strength, enabling producers to safely reduce cement content in their mixes and achieve further carbon reductions without compromising quality. CO₂ mineralization is compliant with ASTM C494 Type S and building with CO₂ mineralized concrete can contribute to a project’s LEED points, as concrete made with CarbonCure provides a 4-6% reduction to Global Warming Potential (GWP).
CarbonCure’s Solution: How it Works

1. CarbonCure’s technology is retrofitted to an existing concrete plant.
2. Carbon dioxide (CO₂) gas is primarily sourced as a by-product from industrial processes.
3. The purified CO₂ gas is delivered in pressurized vessels by commercial gas suppliers.
4. CarbonCure’s proprietary delivery system precisely injects the CO₂ into the concrete mix.
5. Batching is controlled by a simple interface that’s integrated with the batch computer.
6. Once injected, CO₂ reacts with cement to form a nano-sized mineral that becomes permanently embedded in concrete.

Formation of nano-sized mineral
The nanocrystalline carbonate material, as seen in this scanning electron micrograph, accelerates the cement hydration and improves the compressive strength of concrete.
A Win-Win Solution for All

Developers & Owners: Meet Sustainability Goals

By building with low-carbon building materials—such as CO₂ mineralized concrete—building owners and developers are able to reduce embodied carbon in buildings and thereby establish themselves as leaders who prioritize sustainability.

Interested in examples of sustainable projects built with CO₂ mineralized concrete? View CarbonCure’s reference projects.

Architects: Reduce GWP

CarbonCure reduces the GWP (CO₂e) of concrete, which contributes to your ability to earn points in the following Materials & Resources LEED credits:

1. Building Life-Cycle Impact Reduction
2. Building Product Disclosure and Optimization – Environmental Product Declarations

Learn more in the LEED infosheet.

Structural Engineers: No Compromises

Millions of cubic yards of CO₂ mineralized concrete have been produced to date, and testing concludes that CO₂ mineralized concrete has a neutral impact on durability properties. Plus, CO₂ mineralization is compliant with ASTM. Ready to get started? Download and review CarbonCure’s CO₂ mineralized concrete spec language inserts.

Contactors: Same Reliable Quality

Countless studies and field demonstrations have shown that CO₂ has no impact on the fresh or hardened properties of concrete, including colour, texture, durability, workability, pump-ability and finishability. Nor does it impact cycle time or set time. Want to dive deeper? See CarbonCure’s detailed FAQ document for a summary of a variety of testing results.
Reference Project: 725 Ponce

Atlanta, GA United States

Thomas Concrete delivered 48,000 yd³ (36,700 m³) of concrete made with CarbonCure for every application of this building. As a result, 1.5 million pounds (680 tonnes) of CO₂ were avoided; which is equivalent to 888 acres (360 hectares) of trees sequestering CO₂ for a year.

“Uzun+Case, with input from Thomas Concrete, specified CarbonCure to reduce the carbon footprint of 725 Ponce. We’re proud to have saved 1.5 million pounds of CO₂ while maintaining our high-quality standards for concrete.”

Rob Weilacher
Engineer of Record, Uzun+Case
Reduce Embodied Carbon with CarbonCure’s Concrete Solution

Reference Project: Cedar Creek Distribution Center
Lebanon, TN United States

This tilt-up project just outside of Nashville includes an estimated 8,250 yd³ (6,308 m³) concrete made with CarbonCure supplied by Irving Materials, Inc., saving an estimated 140,000 pounds (63,503 kilograms) of CO₂. That’s equivalent to the CO₂ that 82 acres (33 hectares) of trees would sequester in a year.

“MDH develops and manages traditional industrial real estate properties with an entrepreneurial mindset. We believe that social responsibility as it relates to our communities and environment is a core principle of good business. We’re proud to have reduced the carbon footprint of Cedar Creek Distribution Center, and intend to continue to use CarbonCure in future construction across the country.”

Arun Singh
Chief Financial Officer, MDH Partners

Building Description:
226,000 ft² (20,996 m²)
warehouse facility

Developer:
MDH Partners
Concrete Supplier:
Irving Materials, Inc.
Architect:
Ware Malcomb
Structural Engineer:
Haines Gibson
Concrete Subcontractor:
Southeast Concrete Systems
Completion:
2021
Referncce Project: Amazon’s Second HQ (HQ2)

Arlington, VA United States

Thornton Tomassetti specified CO₂ mineralized concrete as part of its low embodied carbon concrete spec to meet Amazon’s sustainability goals. Miller & Long will deliver an estimated 106,555 yd³ (81,467 m³) of concrete made with CarbonCure; which will save approximately 2,522,000 pounds (1,144 tonnes) of CO₂.

“We are looking forward to lowering the carbon footprint of many of our buildings by using CarbonCure concrete, including in Amazon’s HQ2 building in Virginia.”

Kara Hurst
Vice President of Sustainability, Amazon

Building Description:
2.8 million ft² (260,129 m²) office space in total over 3 high-rises

Owner:
Amazon

Concrete Supplier:
Miller & Long

Architect:
ZGF Architects

Structural Engineer:
Thornton Tomassetti

General Contractor:
Clark Construction

Completion:
Estimated 2022
Build for the Future.
Build with CarbonCure.

CarbonCure has been used on thousands of projects ranging from healthcare to higher education, home developments, and corporate campuses.

For more information about building with CarbonCure concrete, please contact a CarbonCure representative at +1 (844) 407-0032 (toll-free) or send us an email at info@carboncure.com.