

.

The Drive Toward Reducing Carbon in Concrete Construction

Speakers

Donna Laquidara-Carr, PhD, LEED AP

Industry Insights Research Director

Dodge Construction Network

Allison Palmer

Senior Manager, Strategic Business CarbonCure Technologies

AGENDA

□ Why Address Embodied Carbon?

The Importance of Concrete in Reducing Embodied Carbon

□ Where We Are Now

Drivers for Increasing Reductions

□ Challenges

□ Advancements in Concrete

21% Building Sector share of total GHG emissions:

- 57% indirect emissions from offsite generation of electricity and heat
- 24% direct emissions produced onsite
- 18% embodied emissions

Need further gains: in most regions, efficiency improvements: have been matched by growth in floor area per capita.

"Well-designed and effectively implemented mitigation actions in the building sector have significant potential for achieving the UN Sustainable Development Goals."

Start treating carbon accounting the same way you treat your financial accounting. You need to know [your entire] footprint and what you can do about it.

Cristina Gamboa, CEO, World Green Building Council

AGENDA

□Why Address Embodied Carbon?

□ The Importance of Concrete in Reducing Embodied Carbon

□ Where We Are Now

Drivers for Increasing Reductions

□ Challenges

□ Advancements in Concrete

Did you know?

Cement makes up only 12% of the weight of concrete.

But is responsible for **95%** of concrete's carbon footprint.

Cement Manufacturing Process

Cement Manufacturing Process

Concrete is the most abundant human-made material in the world.

As a result, cement production creates ~7% of the world's CO₂ emissions and is one of the **largest contributors** to embodied carbon in the built environment.

Concrete Made At Unparalleled Scale

*Source: "*27 Materials on Which Industrialized Society Depends" Adapted from Ashby (2013) Materials and the environment, eco-informed material choice. ISBN 978-0-12-385971-6

Cement Demand Projection

World Portland Cement Production 1990-2050

Cement demand expected to grow 12 to 23% by 2050.

-IEA, Cement Sustainability Initiative

AGENDA

□Why Address Embodied Carbon?

The Importance of Concrete in Reducing Embodied Carbon

□ Where We Are Now

Drivers for Increasing ReductionsChallenges

Advancements in Concrete

Online Study Conducted Spring 2022

Requirements to participate:

Had to be involved with or have influence over the specification or purchase of concrete for projects.

45 Architects

43

Structural

Engineers

45 Contractors

Current Approach to Tracking and Reducing Embodied Carbon

58%

Share of Respondents Who Track Embodied Carbon on at Least Some of Their Projects

- We track the embodied carbon on all of our building projects and are actively seeking to reduce it
- We track the embodied carbon on most of our building projects and are actively seeking to reduce it
- We track the embodied carbon on at least some of our building projects and are actively seeking to reduce it
- We are tracking embodied carbon on at least some of our projects, but are not yet seeking to reduce it

Means of Measuring Embodied Carbon

Lifecycle Analysis

Share Using Lifecycle Analysis

 Average Share of Projects on Which Lifecycle Analysis Is Deployed by Users

Environmental Product Declarations

EPDs use consistent measurements for easy & objective comparison of products in same category

Environmental Facts Functional unit = 1 yd ³ of concrete	Impact
Primary Energy Demand (BTU)	9.3x10 ⁵
Global Warming Potential (lb CO ₂ eq)	360
Acidification Potential (lb H+ eq)	40
Eutrophication Potential (lb N eq)	0.4
Ozone Depletion Potential (lb CFC-11 eq)	1.98x10 ⁻⁵
Smog Potential (lb O ₃ eq)	21

Prove how your concrete is different

CarbonCure Express EPD

Easy as 1,2,3

- CarbonCure does all the heavy lifting
- No headaches
- CarbonCure provides the guidance and expertise to create the LCA and EPD
- Low time investment

Straightforward Cost

- Less upfront costs
- Fixed fee per plant
- Unlimited EPDs per plant

High-Quality

- Product-specific EPDs
- Digital integration allows for fast and accurate EPDs using real data

How CarbonCure Express EPD is Different

Tell Us About Your Mixes: We need to know about the raw materials that go into your mixes.

Tell Us About Your Plant: Help us learn more about your suppliers and ancillary materials.

And that's it! We take care of the rest.

....

....

Use of EPDs

Use Environmental Product Declarations (All Respondents)

Dodge Data & Analytics, 2022

Frequency of Use of EPDs

(According to Those Using Them)

Dodge Data & Analytics, 2022

Use of EPDs

Frequency That Practitioners Request EPDs on All Projects

Increased Use of EPDs in the Last Year

AGENDA

□Why Address Embodied Carbon?

The Importance of Concrete in Reducing Embodied Carbon

□ Where We Are Now

□ Drivers for Increasing Reductions

□ Challenges

Advancements in Concrete

Owners Driving Increased Engagement

Frequency of Client Requests for Reducing Embodied Carbon

Dodge Data & Analytics, 2022

Owners Driving Increased Engagement

Frequency of Clients Asking for EPDs

Dodge Data & Analytics, 2022

Most/All Clients Ask for EPDs

Dodge Data & Analytics, 2022

Owners Driving Increased Engagement

Involved in Projects With Owners/Investors With Specific ESG Commitments

Dodge Data & Analytics, 2022 63% **61% 87%** 18% 51% **65%** 49% 20% 21% 33% 29% 14% Architects Engineers Contractors

Yes
No
Unsure of Owner Commitments/Unfamiliar With ESG
Increase in the Number of Owners With Commitments in the Past Year

DODGE CONSTRUCTION NETWORK | CONFIDENTIAL

Reasons That Practitioners Currently Take Embodied Into Consideration at Project Start

Importance of Integrating Reduction of Embodied Carbon Into Green Building Projects in the Next Five Years

- Only Important for Those Doing Intensive Green Building Projects
- Will Not Have an Important Role

Global CO₂ Challenge

Global temperature projections for various scenarios

RCP8.5 Business-as-usual 2.2 trillion tons carbon

RCP6.0 emissions peak 2080 1.6 trillion tons carbon

RCP4.5 emissions peak 2040-50 1.3 trillion tons carbon

RCP2.6 (1.5°C) 0.53 trillion tons carbon zero CO₂ emissions ~2050

Source: Reproduced with permission from Architecture 2030; Adapted from IPCC Fifth Assessment Report, 2013. Representative Concentration Pathways (RCP), temperature projections for SRES scenarios and the RCPs.

The Embodied Carbon Challenge

A multi-disciplinary challenge to achieve net zero embodied carbon by 2050

The 2030 Challenge for Embodied Carbon

Buildings, Infrastructure, and Materials

Mission alignment with:

Source: Reproduced with permission from Architecture 2030. 2030, Inc. / Architecture 2030. All Rights Reserved.

AGENDA

 Why Address Embodied Carbon?
 The Importance of Concrete in Reducing Embodied Carbon
 Where We Are Now

Drivers for Increasing Reductions

□ Challenges

□ Advancements in Concrete

Top Reasons That Embodied Carbon Is NOT Taken Into Consideration at Project Start

Architects

- Not a priority for most clients (71%)
- Concerns about increased cost (49%)
- Lack of knowledge of how to measure (44%)

Engineers

- Not a priority for most clients (37%)
- Concerns about increased cost (37%)
- Concerns about schedule impacts (33%)

Contractors

- Concerns about increased cost (58%)
- Lack of knowledge of how to measure (33%)
- Not a priority for most clients (31%)

Top Reasons That Embodied Carbon Is NOT Taken Into Consideration at Project Start

Reasons That Practitioners Currently Do NOT Conduct a Lifecycle Analysis on Their Projects

Importance of Reducing Embodied Carbon of Concrete to Overall Embodied Carbon Reduction on Projects

AGENDA

Why Address Embodied Carbon?
The Importance of Concrete in Reducing Embodied Carbon
Where We Are Now
Drivers for Increasing Reductions
Challenges

□ Advancements in Concrete

Aware of Concrete Products or Companies That Can Reduce the Level of Embodied Carbon

CarbonCure's Solution for Embodied Carbon

- CarbonCure's CO₂ mineralization technologies offer a proven solution for reducing embodied carbon *today*
- The tech beneficially repurposes CO₂ to produce the same high quality concrete but with a lower carbon footprint.

Concrete Manufacturing Process

CO₂ Injection

New Emphasis on Embodied Carbon

Green buildings certification systems now address embodied carbon

LEED BD+C: New Construction I v4.1 - LEED v4.1 Building Life-Cycle Impact Reduction

Possible 5 points

2 points

Demonstrated impact reduction of at least 5% in global warming potential (GWP) and 2 other impact categories

3 points

Demonstrated impact reduction of at least **10%** in global warming potential and 2 other impact categories

4 points

Demonstrated impact reduction of 20% in global warming potential, at least 10% in 2 other impact categories, and building reuse and/or use of salvaged materials

Materials & Resources

Focuses on minimizing embodied environmental impacts to support a life cycle approach that improves performance

Option 4: Whole Building Life Cycle Assessment (1-4 points)

Conduct a life cycle assessment and show a 10% impact reduction in embodied CO_2 emissions + 2 other impact categories shown on an environmental product declaration

IEA Technology Roadmap

Pathway for reducing emissions in the cement and concrete sector

- 48% of emissions reductions must come from carbon capture and utilization strategies
- 37% of reductions must come from reduced clinker to cement ratios

Key Takeaways & Questions

DODGE CONSTRUCTION NETWORK | CONFIDENTIAL

Thank you

CARBON CURE

	K TO K TO K S		A T K T K T K	K 7 K 7 K 7 K 7
				KT KT KT KT
				K T K T K T K T
				K 7 K 7 K 7 K 7
		(A) (K) (K) (K) (K)		
	L T L T L T L T L T L T			
* * * * * * * * *		<		
				xx
	K T K T K T K T K T			
	3 6 3 6 3 6 3 6 3 6 3	EX EX X EX EX EX P		
		KN N KN KN F		
			LA KA KA KA K	